Review Article

Risk of activation of human viruses lurking in ambient following COVID-19 prevention supplies excessive use

Mojtaba Ehsanifar*, Zeinab Yavari and Mohamad Reza Motaghedifar

Published: 15 February, 2022 | Volume 3 - Issue 1 | Pages: 011-015

Due to extensive COVID-19 prevention measures, millions of tons of chemicals penetrated the natural environment. Alterations of viruses in the environment, the neglected perceiver of environmental fluctuations, remain obscure. Chemicals especially trihalomethane restrained the virus community diversity. Segments of SARS-CoV-2 RNA have been detected near hospitals that suggesting the environment as a missing link in the transmission route. Human viruses lurking in the environment were potentially activated by pandemic prevention chemicals, warning an overlooked burden to human health. This letter warns of the risk of activation of human viruses in the environment following the overuse of COVID-19 prevention devices and emphasizes the long-term monitoring of environmental viruses in the post-pandemic period.

Read Full Article HTML DOI: 10.29328/journal.jcmhs.1001014 Cite this Article Read Full Article PDF


SARS-CoV-2; Human virus; COVID-19; Chlorine; Trihalomethane; Glucocorticoids


  1. Dolja VV, Koonin EV. Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer. Virus Res. 2018; 244: 36-52. PubMed: https://pubmed.ncbi.nlm.nih.gov/29103997/
  2. Schulz F, Roux S, Paez-Espino D, Jungbluth S, Walsh DA, et al. Giant virus diversity and host interactions through global metagenomics. Nature. 2020; 578: 432-436. PubMed: https://pubmed.ncbi.nlm.nih.gov/31968354/
  3. International Committee on Taxonomy of Viruses Executive Committee. The new scope of virus taxonomy: partitioning the virosphere into 15 hierarchical ranks. Nat Microbiol. 2020; 5: 668-674. PubMed: https://pubmed.ncbi.nlm.nih.gov/32341570/
  4. Dion MB, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny. Nat Rev Microbiol. 2020; 18: 125-138. PubMed: https://pubmed.ncbi.nlm.nih.gov/32015529/
  5. Xagoraraki IZ. Yin, Svambayev Z. Fate of viruses in water systems. J Environ Eng. 2014; 140: 04014020.
  6. Elsaid K, Olabi V, Sayed ET, Wilberforce T, Abdelkareem MA. Effects of COVID-19 on the environment: an overview on air, water, wastewater, and solid waste. J Environmen Manag. 2021; 112694. PubMed: https://pubmed.ncbi.nlm.nih.gov/33990012/
  7. Ehsanifar M, jafari JA, Siboni MS, Asadgol Z, Arfaeinia H. Effect of ozonation and hydrogen peroxide on reducing the volume and chemical oxygen demand of waste water treatment plants sludge. Caspian J Health Res. 2018; 3: 15-19.
  8. Liu Y, Ning Z, Chen Y, Guo M, Liu Y, et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature. 2020; 582: 557-560. PubMed: https://pubmed.ncbi.nlm.nih.gov/32340022/
  9. Saguti F, Magnil E, Enache L, Churqui MP, Johansson A, et al. Surveillance of wastewater revealed peaks of SARS-CoV-2 preceding those of hospitalized patients with COVID-19. Water Res. 2021; 189: 116620. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7654368/
  10. Ehsanifar M. Airborne aerosols particles and COVID-19 transition. Environ Res. 2021; 200: 111752. PubMed: https://pubmed.ncbi.nlm.nih.gov/34302822/
  11. Setti L, Passarini F, De Gennaro G, Barbieri P, Perrone MG, et al. SARS-Cov-2RNA found on particulate matter of Bergamo in Northern Italy: first evidence. Environ Res. 2020; 188: 109754. PubMed: https://pubmed.ncbi.nlm.nih.gov/32526492/
  12. Larsen DA, Wigginton KR. Tracking COVID-19 with wastewater. Nat Biotechnol. 2020; 38: 1151-1153. PubMed: https://pubmed.ncbi.nlm.nih.gov/32958959/
  13. Medema G, Heijnen L, Elsinga G, Italiaander R, Brouwer A, et al. Presence of SARS-Coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands. Environ Sci Technol Lett. 2020; 7: 511-516. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7254611/
  14. Randazzo W, Truchado P, Cuevas-Ferrando E, Simón P, Allende A, et al. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 2020; 181: 115942. PubMed: https://pubmed.ncbi.nlm.nih.gov/32425251/
  15. Trottier J, Darques R, Mouheb NA, Partiot E, Bakhache W et al. Post-lockdown detection of SARS-CoV-2 RNA in the wastewater of Montpellier, France. One Health. 2020; 10: 100157.
  16. Guerrero-Latorre L, Ballesteros I, Villacrés-Granda I, Granda MG, Freire-Paspuel B, et al. SARS-CoV-2 in river water: Implications in low sanitation countries. Sci Total Environ. 2020; 743: 140832. PubMed: https://pubmed.ncbi.nlm.nih.gov/32679506/
  17. Ding S, Liang TJ. Is SARS-CoV-2 also an enteric pathogen with potential fecal–oral transmission? A COVID-19 virological and clinical review. Gastroenterology. 2020; 159: 53-61. PubMed: https://pubmed.ncbi.nlm.nih.gov/32353371/
  18. Kumar M, Thakur AK, Mazumder P, Kuroda K, Mohapatra S, et al. Frontier review on the propensity and repercussion of SARS-CoV-2 migration to aquatic environment. J Hazard Mater Lett. 2020; 1: 100001. PubMed: https://pubmed.ncbi.nlm.nih.gov/34977840/
  19. Organization, W.H, Water, sanitation, hygiene and waste management for COVID-19: technical brief, 03 March 2020. 2020, World Health Organization.
  20. Wurtzer S, Waldman P, Ferrier-Rembert A, Frenois-Veyrat G, Mouchel JM, et al. Several forms of SARS-CoV-2 RNA can be detected in wastewaters: implication for wastewater-based epidemiology and risk assessment. Water Res. 2021; 198: 117183. PubMed: https://pubmed.ncbi.nlm.nih.gov/33962244/
  21. Rimoldi SG, Stefani F, Gigantiello A, Polesello S, Comandatore F, et al. Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Sci Total Environ. 2020; 744: 140911. PubMed: https://pubmed.ncbi.nlm.nih.gov/32693284/
  22. Muhammad S, Long X, Salman M, COVID-19 pandemic and environmental pollution: A blessing in disguise? Sci Environ. 2020; 728: 138820. PubMed: https://pubmed.ncbi.nlm.nih.gov/32334164/
  23. Ehsanifar M. Does Exposure to Air Pollution Fine Particles and COVID-19 Contribute to the Risk of Ischemic Stroke? J Med Public Health. 2021; 2: 1020.
  24. Bhat SA, Bashir O, Bilal M, Ishaq A, Din Dar MU, et al. Impact of COVID-related lockdowns on environmental and climate change scenarios. Environ Res. 2021; 195: 110839. PubMed: https://pubmed.ncbi.nlm.nih.gov/33549623/
  25. Pratama AA, van Elsas JD. The ‘neglected’soil virome–potential role and impact. Trends Microbiol. 2018; 26: 649-662. PubMed: https://pubmed.ncbi.nlm.nih.gov/29306554/
  26. Mehle N, Gutiérrez-Aguirre I, Kutnjak D, Ravnikar M. Water-mediated transmission of plant, animal, and human viruses. Adv Virus Res. 2018; 101: 85-128. PubMed: https://pubmed.ncbi.nlm.nih.gov/29908595/
  27. Vong S, Ly S, Mardy S, Holl D, Buchy P. Environmental contamination during influenza A virus (H5N1) outbreaks, Cambodia, 2006. Emerging Infect Dis. 2008; 14: 1303-1305. PubMed: https://pubmed.ncbi.nlm.nih.gov/18680663/
  28. Shi J. Isolation and characterization of H7N9 viruses from live poultry markets—implication of the source of current H7N9 infection in humans. Chin Sci Bulle. 2013; 58: 1857-1863.
  29. Antwi-Agyei P. A faecal exposure assessment of farm workers in Accra, Ghana: a cross sectional study. BMC Public Health. 2016; 16: 1-13.
  30. Sterne JA, Murthy S, Diaz JV, Slutsky AS, Villar J, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA. 2020; 324: 1330-1341. PubMed: https://pubmed.ncbi.nlm.nih.gov/32876694/
  31. Guan WJ, Ni Z, Hu Y, Liang W, Ou C, et al. Clinical characteristics of coronavirus disease 2019 in China. New Engl J Med. 2020; 382: 1708-1720.
  32. Ghafoor D, Khan Z, Khan A, Ualiyeva D, Zaman N, et al. Excessive use of disinfectants against COVID-19 posing potential threat to living beings. Curr Res Toxicol. 2021; 2: 159-168. PubMed: https://pubmed.ncbi.nlm.nih.gov/33688633/
  33. Horn S, Vogt B, Pieters R, Bouwman H, Bezuidenhout C, et al. Impact of potential COVID-19 treatment on South African water sources already threatened by pharmaceutical pollution. Environ Toxicol Chem. 2020; 39: 1305-1306. PubMed: https://pubmed.ncbi.nlm.nih.gov/32335933/
  34. Shabarova T, Salcher MM, Porcal P, Znachor P, Nedoma J, et al. Recovery of freshwater microbial communities after extreme rain events is mediated by cyclic succession. Nat Microbiol. 2021; 6: 479-488. PubMed: https://pubmed.ncbi.nlm.nih.gov/33510474/
  35. Revetta RP, Gomez-Alvarez V, Gerke TL, Curioso C, Domingo JWS, et al. Establishment and early succession of bacterial communities in monochloramine-treated drinking water biofilms. FEMS Microbiol Ecol. 2013; 86: 404-414. PubMed: https://pubmed.ncbi.nlm.nih.gov/23789638/
  36. Ghernaout D, Ibn-Elkhattab RO. Removing antibiotic-resistant bacteria (ARB) carrying genes (ARGs): challenges and future trends. Open Access Library J. 2020; 7: 1.
  37. Correa AM, Howard-Varona C, Coy SR, Buchan A, Sullivan MB, et al. Revisiting the rules of life for viruses of microorganisms. Nat Rev Microbiol. 2021; 501-513. PubMed: https://pubmed.ncbi.nlm.nih.gov/33762712/
  38. Debroas D, Siguret C. Viruses as key reservoirs of antibiotic resistance genes in the environment. The ISME J. 2019; 13: 2856-2867. PubMed: https://pubmed.ncbi.nlm.nih.gov/31358910/
  39. Haaber J. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nat Commun. 2016; 7: 1-8.
  40. Kurasam J, Sihag P, Mandal PK, Sarkar S. Presence of fluoroquinolone resistance with persistent occurrence of gyrA gene mutations in a municipal wastewater treatment plant in India. Chemosphere. 2018; 211: 817-825. PubMed: https://pubmed.ncbi.nlm.nih.gov/30099166/
  41. Haramoto E, Kitajima M, Hata A, Torrey JR, Masago Y, et al. A review on recent progress in the detection methods and prevalence of human enteric viruses in water. Water Res. 2018; 135: 168-186. PubMed: https://pubmed.ncbi.nlm.nih.gov/29471200/
  42. Symonds E, Nguyen KH, Harwood VJ, Breitbart M. Pepper mild mottle virus: A plant pathogen with a greater purpose in (waste) water treatment development and public health management. Water Res. 2018; 144: 1-12. PubMed: https://pubmed.ncbi.nlm.nih.gov/30005176/
  43. Bello-Morales R, Ripa I, López-Guerrero JA. Extracellular vesicles in viral spread and antiviral response. Viruses. 2020; 12: 623. PubMed: https://pubmed.ncbi.nlm.nih.gov/32521696/
  44. Martins M, Rodrigues FS, Joshi LR, Jardim JC, Flores MM, et al. Orf virus ORFV112, ORFV117 and ORFV127 contribute to ORFV IA82 virulence in shee. Vet Microbiol. 2021; 257: 109066. PubMed: https://pubmed.ncbi.nlm.nih.gov/33866062/
  45. Zhang M, Ghosh S, Kumar M, Santiana M, Bleck CKE, et al. Emerging Pathogenic Unit of Vesicle-Cloaked Murine Norovirus Clusters is Resistant to Environmental Stresses and UV254 Disinfection. Environ Sci Technol. 2021; 55: 6197-6205. PubMed: https://pubmed.ncbi.nlm.nih.gov/33856208/
  46. de Oliveira Lopes A, Spitz N, de Souza Reis CR, de Paula VS. Update of the global distribution of human gammaherpesvirus 8 genotypes. Sci Rep. 2021; 11: 7640. PubMed: https://pubmed.ncbi.nlm.nih.gov/33828146/
  47. Klemeš JJ. COVID-19 Pandemics: Influence on Circular Economy. In Book of Abstracts.
  48. Dayaram A, Seeber PA, Greenwood AD. Environmental Detection and Potential Transmission of Equine Herpesviruses. Pathogens. 2021; 10: 423. PubMed: https://pubmed.ncbi.nlm.nih.gov/33916280/
  49. Yun C, Lee HJ, Lee CJ, Small Molecule Drug Candidates for Managing the Clinical Symptoms of COVID-19: a Narrative Review. Biomol Ther. 2021; 29: 571. PubMed: https://pubmed.ncbi.nlm.nih.gov/34615772/
  50. He Q, Song X, Huang Y, Huang W, Ye B, et al. Dexamethasone stimulates hepatitis B virus (HBV) replication through autophagy. Medical science monitor. Int Med J Experimen Clin Res. 2018. 24: 4617-4624. PubMed: https://pubmed.ncbi.nlm.nih.gov/29972684/
  51. Yang EV, Marketon JIW, Chen M, Lo KW, Kim S, et al. Glucocorticoids activate Epstein Barr virus lytic replication through the upregulation of immediate early BZLF1 gene expression. Brain Behav Immun. 2010; 24: 1089-1096. PubMed: https://pubmed.ncbi.nlm.nih.gov/20466055/
  52. Fadaka AO, Sibuyi NRS, Madiehe AM, Meyer M. Computational insight of dexamethasone against potential targets of SARS-CoV-2. J Biomol Struct Dyn. 2020; 1-11. PubMed: https://pubmed.ncbi.nlm.nih.gov/32924825/
  53. Ma SQ, Zhang J, Wang YS, Xia J, Liu P, et al. Glucocorticoid therapy delays the clearance of SARS‐CoV‐2 RNA in an asymptomatic COVID‐19 patient. J Med Virol. 2020; 92: 2396-2397. PubMed: https://pubmed.ncbi.nlm.nih.gov/32470160/
  54. Zhong R, Zou H, Gao J, Wang T, Bu Q, et al. A critical review on the distribution and ecological risk assessment of steroid hormones in the environment in China. Sci Total Environ. 2021; 786: 147452. PubMed: https://pubmed.ncbi.nlm.nih.gov/33975111/


Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?